Lecture 11: Efficient Algorithms

Notation Convention

- In today's lecture capital alphabets, for example, X, represents a natural number
- Further, the number of bits needed to present the number X is denoted by the corresponding small number x

Length of Representation

- Note that the smallest integer X that requires n bits for binary ($n-1$)-times representation has the binary representation $1 \overbrace{0 \cdots 0}$. This represents the number $X=2^{n-1}$.
- Note that the largest integer X that can be expressed using n n-times
bits has binary representation $\overbrace{1 \cdots 1}$. This represents the number $X=2^{n}-1$.
- From these two observations, we can conclude that the number of bits needed to represent any number X is give by $x=\lceil\lg (X+1)\rceil$
- Intuitive Summary: The number X requires $x=\lg X$ bits for its representation
- An efficient algorithm is an algorithm whose running time is polynomial in the size of the input.
- For example, suppose an algorithm takes as input a prime P that needs $p=1000$ bits to represent it. Note that the prime P is at least $2^{1000-1}=2^{999}$, which is humongous (more than the number of atoms in the universe). Our algorithm's running time should be polynomial in $p=1000$, rather than the number $P \geqslant 2^{999}$.
- We shall assume that all inputs are already provided in the binary representation
- Suppose we are given two number A and B. Our objective is to generate the binary representation of the sum of these two numbers.
- Note that A needs $a=\lceil\lg (A+1)\rceil$ and B needs $b=\lceil\lg (B+1)\rceil$ bits for representation

Addition II

- Naive Attempt.
$\operatorname{Add}(A, B)$:
- $\operatorname{sum}=A$
- For $i=1$ to B :
- $\operatorname{sum}+=1$
- Return sum
- Note that the inner loop runs B times, which is at least 2^{b-1}, i.e., exponential in the input size. So, this algorithm is inefficient.

Addition III

- Efficient Addition Algorithm.

$$
\operatorname{Add}(A, B):
$$

- $c=\max \{a, b\}$, carry $=0$
- For $i=0$ to $c-1$:
- $C_{i}=A_{i}+B_{i}+$ carry
- If $C_{i} \geqslant 2$:
- carry $=1$
- $C_{i}=C_{i} \% 2$
- Else: carry $=0$
- If carry $==1$:
- $c+=1$
- $C_{c-1}=1$
- Return $C_{c-1} C_{c-2} \ldots C_{1} C_{0}$

Addition IV

- The running time of this algorithm is $O(a+b)$, where $a=\log A$ and $b=\log B$. This algorithm is efficient!

Multiplication I

- Suppose we are given two number A and B. Our objective is to generate the binary representation of the product of these two numbers.
- Our algorithm should have running time polynomial in $a=\lceil\lg (A+1)\rceil$ and $b=\lceil\lg (B+1)\rceil$

Multiplication II

- Naive Attempt.

```
Multiply(A, B):
```

- product = 1
- For $i=1$ to B :
- product+ = A
- Return product
- Note that the inner loop runs B times, which is at least 2^{b-1}, i.e., exponential in the input size. So, this algorithm is inefficient.

Multiplication III

- Efficient Addition Algorithm.

```
Multiply(A, B):
```

- to _add $=A$
- remains $=B$
- product $=0$
- While remains >0 :
- If remains\&1 = 1: product+ = to_add
- to_add $=$ to_add $\ll 1$
- remains $=$ remains $\gg 1$
- Return product
- The running time of this algorithm is $O\left((a+b)^{2}\right)$, where $a=\log A$ and $b=\log B$. This algorithm is efficient!

Multiplication IV

- Additional Reading. Read Fast Fourier Transform for even faster multiplication algorithms!
- Students are encouraged to write the pseudocode of an efficient division algorithm that takes as input integers A and B and outputs integers M and R such that
(1) $B=M \cdot A+R$, and
(2) $R \in\{0, \ldots, A-1\}$
- Our objective is to find the greatest common divisor G of two input integers A and B
- Note that if we iterate over all integers $\{1, \ldots, A\}$ to find the largest integer that divides B, then this algorithm has a loop that runs A times, that is, it is exponential in the input length
- So, we use Euclid's GCD algorithm. Let R be the remainder of dividing B by A. If $R=0$, then A is the GCD of A and B. Otherwise, it recursively returns the $\operatorname{gcd}(R, A)$. This algorithm is based on the observation that

$$
\operatorname{gcd}(A, B)=\operatorname{gcd}(R, A)
$$

Students are encouraged to prove this statement.

- Euclid's GCD Algorithm.
$\operatorname{GCD}(A, B)$
- $R=B \% A$
- While $R>0$:
- $B=A$
- $A=R$
- $R=B \% A$
- Return A
- Exercise. Prove that this is an efficient algorithm.

Generate n-bit Random Number

- The following code generates a random number in the range $\left[2^{n-1}, 2^{n}-1\right]$
Random(n):
- $C=1$
- For $i=1$ to $(n-1)$:
- $r \stackrel{\Phi}{\leftarrow}\{0,1\}$
- $C=(C \ll 1) \mid r$
- It is easy to see that this is an efficient algorithm

Generate a Random n-bit Prime I

- Assume that there exists an efficient algorithm Is_Prime(N) that tests whether the integer N is a prime or not. In the future, we shall see one such algorithm.
- Consider the following code

Prime (n):

- While true :
- $P=\operatorname{Random}(n)$
- If Is_Prime (P) : Return P
- The efficiency of the above algorithm depends on the number of times the while-loop runs, which depends on the number of primes in the range $\left[2^{n-1}, 2^{n}-1\right]$

Generate a Random n-bit Prime II

- We shall rely on the density of prime numbers to understand the running time of the algorithm mentioned above

Theorem (Prime Number Theorem)

There are (roughly) $N / \log N$ prime numbers $<N$

- So, there are roughly $2^{n} / n$ prime numbers $<2^{n}$. Similarly, there are roughly $2^{n-1} /(n-1)$ prime numbers $<2^{n-1}$. So, in the range $\left[2^{n-1}, 2^{n}-1\right]$, the number of primes is (roughly)

$$
\frac{2^{n}}{n}-\frac{2^{n-1}}{n-1}=2^{n-1}\left(\frac{2}{n}-\frac{1}{n-1}\right) \approx 2^{n-1} \frac{1}{n}
$$

- The range $\left[2^{n-1}, 2^{n}-1\right]$ has a total of 2^{n-1} numbers.

Generate a Random n-bit Prime III

- So, the probability that a random number picked from this range is a prime number is (roughly)

$$
\frac{2^{n-1} \cdot \frac{1}{n}}{2^{n-1}}=\frac{1}{n}
$$

- Intuitively, if we run the inner-loop n times, then we expect to encounter one prime number. We shall make this more formal in the next class.
- I want to emphasize that if the density of the primes was not $1 / \operatorname{poly}(n)$, then the algorithm presented above will not be efficient. We are extremely fortunate that primes are so dense!

