

Notation Convention

@ In today's lecture capital alphabets, for example, X, represents
a natural number

o Further, the number of bits needed to present the number X is
denoted by the corresponding small number x

Efficient Algorithms

Length of Representation

Note that the smallest integer X that requires n bits for binary
(n—1)-times
. . . H\ .
representation has the binary representation 1 0---0 . This
represents the number X = 2771,

Note that the largest integer X that can be expressed using n

_t-
‘ . . n-times ‘
bits has binary representation 1---1. This represents the
number X =27 — 1.

From these two observations, we can conclude that the
number of bits needed to represent any number X is give by
x = [lg(X +1)]

Intuitive Summary: The number X requires x = Ig X bits for
its representation

Efficient Algorithms

Efficiency

o An efficient algorithm is an algorithm whose running time is
polynomial in the size of the input.

@ For example, suppose an algorithm takes as input a prime P
that needs p = 1000 bits to represent it. Note that the prime
P is at least 21000-1 — 2999 "\yhich is humongous (more than
the number of atoms in the universe). Our algorithm's running
time should be polynomial in p = 1000, rather than the
number P > 2999

@ We shall assume that all inputs are already provided in the
binary representation

Efficient Algorithms

Addition |

@ Suppose we are given two number A and B. Our objective is

to generate the binary representation of the sum of these two
numbers.

o Note that A needs a = [Ig(A+ 1)| and B needs
b = [lg(B + 1)] bits for representation

Efficient Algorithms

Addition Il

@ Naive Attempt.

Add(A, B):

e sum = A
e Fori=1to B:
o sum+ =1

e Return sum

o Note that the inner loop runs B times, which is at least 26-1,
i.e., exponential in the input size. So, this algorithm is

inefficient.

Efficient Algorithms

Addition IlI

o Efficient Addition Algorithm.

Add(A, B):
e ¢ = max{a, b}, carry =0
e Fori=0toc—1:
o Ci=A;+ B+ carry

o If C; > 2:
e carry =1
[] i = C,%2
e Else: carry =0
o If carry ==
e ct+=1
e C1=1
e Return C._1Cen... 1 Gy

Efficient Algorithms

Addition IV

@ The running time of this algorithm is O(a + b), where
a=log A and b = log B. This algorithm is efficient!

Efficient Algorithms

Multiplication |

@ Suppose we are given two number A and B. Our objective is
to generate the binary representation of the product of these
two numbers.

@ Our algorithm should have running time polynomial in
a=[lg(A+1)] and b= [Ig(B +1)]

Efficient Algorithms

Multiplication Il

o Naive Attempt.

Multiply(A, B):
e product =1

e Fori=1to B:
o product+ =A

e Return product

o Note that the inner loop runs B times, which is at least 26~1,
i.e., exponential in the input size. So, this algorithm is
inefficient.

Efficient Algorithms

Multiplication [l

o Efficient Addition Algorithm.

Multiply(A, B):
o to add=A

e remains = B
e product =0

o While remains > 0:

o If remains&1= 1: product+ = to_add
o to_add=to_add K1
@ remains = remains > 1

e Return product

o The running time of this algorithm is O((a + b)?), where
a=log A and b = log B. This algorithm is efficient!

Efficient Algorithms

Multiplication IV

o Additional Reading. Read Fast Fourier Transform for even
faster multiplication algorithms!

Efficient Algorithms

Division

@ Students are encouraged to write the pseudocode of an
efficient division algorithm that takes as input integers A and
B and outputs integers M and R such that

@ B=M-A+R, and
@ Re{0,....,A—1}

Efficient Algorithms

Finding Greatest Common Divisor |

@ Our objective is to find the greatest common divisor G of two
input integers A and B

o Note that if we iterate over all integers {1,..., A} to find the
largest integer that divides B, then this algorithm has a loop
that runs A times, that is, it is exponential in the input length

@ So, we use Euclid’s GCD algorithm. Let R be the remainder of
dividing B by A. If R =0, then A is the GCD of A and B.
Otherwise, it recursively returns the gcd(R, A). This algorithm
is based on the observation that

gcd(A, B) = ged(R, A)

Students are encouraged to prove this statement.

Efficient Algorithms

Finding Greatest Common Divisor ||

e Euclid’'s GCD Algorithm.

GCD(A, B)
o R=B%A

o While R>0:

o Return A

e Exercise. Prove that this is an efficient algorithm.

Efficient Algorithms

Generate n-bit Random Number

@ The following code generates a random number in the range
[2n=1 2m — 1]

Random(n):
e C=1

o Fori=1to (n—1):

° r<i{0,1}
o C=(Ck)|r

@ It is easy to see that this is an efficient algorithm

Efficient Algorithms

Generate a Random n-bit Prime |

@ Assume that there exists an efficient algorithm Is_Prime(N)
that tests whether the integer N is a prime or not. In the
future, we shall see one such algorithm.

@ Consider the following code

Prime(n):
o While true :
o P = Random(n)
o If Is_Prime(P) : Return P

@ The efficiency of the above algorithm depends on the number
of times the while-loop runs, which depends on the number of
primes in the range [2”_1, 2" — 1}

Efficient Algorithms

Generate a Random n-bit Prime Il

@ We shall rely on the density of prime numbers to understand
the running time of the algorithm mentioned above

Theorem (Prime Number Theorem)

There are (roughly) N/log N prime numbers < N

@ So, there are roughly 2"/n prime numbers < 2". Similarly,
there are roughly 2"~1/(n — 1) prime numbers < 2"~1. So, in
the range [2771,2" — 1], the number of primes is (roughly)

2n 2nt e (2_ 1)zz”—ll

n n—1 n n-—1 n

@ The range [2"71,2" — 1] has a total of 2"~! numbers.

Efficient Algorithms

Generate a Random n-bit Prime |1l

@ So, the probability that a random number picked from this
range is a prime number is (roughly)

@ Intuitively, if we run the inner-loop n times, then we expect to
encounter one prime number. We shall make this more formal
in the next class.

@ | want to emphasize that if the density of the primes was not
1/poly(n), then the algorithm presented above will not be
efficient. We are extremely fortunate that primes are so dense!

Efficient Algorithms

